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1  |  INTRODUC TION

The Gill Oxygen Limitation Theory (GOLT) posits that in aquatic, 
water-breathing ectotherms, oxygen uptake at the gills limits 
the aerobic metabolic rate and ultimately, growth and other pro-
cesses that rely on the energy produced by aerobic metabolism 
(Pauly, 1981, 2010, 2021). The basis of this theory is that the surface 
area of the gills (as a two-dimensional surface) cannot grow as fast 
as the body it must supply with oxygen (a three-dimensional volume; 

Pauly, 1981, 2010, 2021). In other words, the ontogenetic scaling of 
gill surface area and body mass will always be less than one, result-
ing in a mismatch between oxygen supply and demand as an organ-
ism increases in size (Pauly,  1981, 2010, 2021). Thus, the ratio of 
gill surface area to body mass will decrease throughout an organ-
ism's lifetime and, eventually, will not be able to match the demand 
of a growing body, at which point the maximum size of the organ-
ism will be reached (Pauly, 1981, 2010, 2021). Because this theory 
posits that gill surface area constrains aerobic metabolic rate, and 
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Abstract
The Gill Oxygen Limitation Theory (GOLT) posits that a mismatch in oxygen supply 
and demand stemming from geometric constraints on gill surface area limits metabolic 
rate and energy available for biological processes. This theory has been suggested to 
explain numerous phenomena observed with warming yet is based upon a relation-
ship among maximum size, growth, and gill surface area established over 40 years ago. 
However, the metric used in this relationship to characterize gill surface area, gill area 
index, fails to capture the known variability in the scaling of gill surface area and is 
biased by the sizes at which gills were measured. Here, we revisit a central prediction 
of the GOLT, asking four key questions that examine limitations in the original rela-
tionship. We find that gill area index does indeed explain variation in growth perfor-
mance across 132 species of fish and this relationship is strikingly similar to the original 
relationship across 42 species. Yet, we argue that gill area index is not an adequate 
measure of gill surface area because (1) gill surface area has a non-linear relationship 
with size and, thus, changes ontogenetically as an individual grows over time and (2) 
because it is based on mean estimates of both gill surface area and body mass. Indeed, 
we show that the value of gill area index for a given species is variable depending on 
how it is calculated. We therefore suggest a pathway forward for assessing whether 
gill surface area is an important factor in explaining variation in growth performance.
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thus processes related to or relying on metabolism, energy, and oxy-
gen, it is multi-faceted and explicitly and implicitly generates a range 
of predictions. Such predictions include those surrounding growth 
and other aspects of life history and ecology (e.g. maximum size, 
timing of maturation and reproduction, spawning phenology, geo-
graphic distributions, activity level) and those based more on physi-
ological processes (e.g. food consumption and conversion efficiency, 
the balance of oxidative versus glycolytic enzymes; Pauly,  1981, 
2010, 2021; Pauly & Liang, 2022). Although originally proposed in 
the early 1980s, interest in the GOLT has experienced a recent re-
surgence in light of research that aims to predict how species will 
respond to continued environmental change, particularly warming 
temperatures and shifting oxygen availability (Cheung et al., 2013; 
Lefevre et al., 2017, 2018; Seibel & Deutsch, 2020). In particular, the 
maximum body size of fishes is expected to decline, or ‘shrink,’ as 
temperatures rise due to, in part, the proposed mismatch in oxygen 
supply and demand at the gills as predicted by the GOLT (Cheung 
et al., 2013; Pauly & Cheung, 2016).

A central prediction of the GOLT is the relationship between 
two indices: growth performance, ϕ, and gill area index (Pauly, 1981, 
2010, 2021). Growth performance is an index integrating the life 
history and mathematical trade-off between growth and maximum 
size and is calculated as log10(k * W∞), where k is the Brody growth 
coefficient and W∞ is asymptotic size, both from a von Bertalanffy 
growth function (Juan-Jordá et al., 2013; Pauly, 1981, 1991). The gill 
area index is somewhat similar to the intercept of the ontogenetic re-
lationship of gill surface area and body mass (the predicted gill sur-
face area for a given body size resulting from a regression equation; 
Pauly, 1981, 2010). However, gill area index is not estimated from a 
regression relationship but calculated as G/Wd, where G = an estimate 
of a species-specific mean gill surface area, W = mean body mass es-
timate associated with the mean gill surface area estimate, and d is 
a scaling parameter that would ideally be the species-specific onto-
genetic slope of the relationship between body mass and gill surface 
area (Pauly, 1981, 2010). The parameter d is included because gill sur-
face area largely scales disproportionately with body mass (i.e. usually 
<1), such that the ratio of gill surface area to body mass for a single 
individual changes throughout its lifetime (and thus is why a mean, 
relative [gill surface area at a given body mass or that predicted from a 
regression equation at a specific body mass], or mass-specific [gill sur-
face area per gram of body mass] is not an ideal metric of gill surface 
area; Bigman et al.,  2018; De Jager & Dekkers, 1975; Palzenberger 
& Pohla,  1992; Wegner,  2011). To calculate gill area index (G/Wd), 
Pauly  (1981) used a compilation from Hughes and Morgan  (1973) 
that reported mean estimates of gill surface area and body mass data 
measured from a random sample of individuals for a given species 
(Table S1). These data were restricted to marine fishes with published 
von Bertalanffy growth parameters, yielding a total of 42 species. Gill 
area index was then calculated for each of these species using mean 
gill surface area, mean body mass data and (due to the paucity of indi-
vidual gill surface area and body mass data for a given species) a pre-
dicted value of d (Pauly, 1981, 2010). For each species, Pauly (1981) 
predicted d from a previously estimated linear relationship between 

the ontogenetic slope of a relationship between body mass and gill 
surface area or metabolic rate versus maximum observed body mass 
(Wmax) for 27 species or genera of fishes, as well as average values of d 
for (1) ‘all freshwater fishes’, (2) ‘all marine fishes’, (3) two different av-
erage values for ‘fishes’ and (4) ‘Gray's intermediates [various marine 
teleosteans]’ (Pauly, 1981). Hereafter, we call this value ‘predicted d’ 
as a value of d was calculated for each species using their maximum 
body mass and the established regression equation, d  =  0.6742 + 
0.03574 * log(maximum body mass) (see p. 264 in Pauly, 1981). Later, 
Pauly (2010) estimated gill area index using a constant value of d for all 
species, d = 0.8, instead of predicting it based on a species' maximum 
body mass. Hence, the gill area indices originally used by Pauly (1981) 
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and Pauly  (2010) were likely biased by the sizes at which gills were 
measured (i.e. the sizes used to generate the species’ means), the pre-
diction of the parameter d and the assumption that the slope of gill 
surface area was constant across a broad array of species (an assump-
tion we now know is false, Bigman et al., 2018; Jager & Dekkers, 1975; 
Palzenberger & Pohla, 1992; Wegner, 2011).

The relationship between growth performance (as the predic-
tor variable) and gill area index (as the response variable) was fitted 
with a reduced major axis regression (called ‘functional regression’ in 
Pauly (1981)). A significant correlation between growth performance 
and gill area index, with r =  .431 (equivalent to an r2 of .19) and a 
p =  .01 [i.e. the slope does not equal zero] was reported across 40 
species (with two species deemed outliers and removed from anal-
ysis; Pauly,  1981). Three additional species were determined to be 
outliers upon visual inspection and were removed from the analysis. 
After doing so, it was reported that the removal of these outliers, 
to arrive at 37 species, ‘greatly improves the correlation, which in-
creases to r = .661 [equivalent to an r2 value of .44]’ (Pauly, 1981). 
Notably, one key assumption of using reduced major axis regression is 
that the relationship between the predictor(s) and response variables 
is symmetric (McArdle, 2003; Smith, 2009). Thus, it does not matter 
which variable is the predictor and which is the response as the re-
sulting coefficients and relationship will be identical (McArdle, 2003; 
Smith, 2009). However, the GOLT makes explicit predictions about 
the direction of causality between gill area index and growth perfor-
mance (Pauly,  1981, 2010). Specifically, this theory argues that gill 
surface area is constraining growth and maximum size (Pauly, 1981, 
2010). As such, reduced major axis regression is likely not an ideal 
method for assessing the relationship between gill area index and 
growth performance in the context of the GOLT and thus other re-
gression methods are likely better suited for such biological ques-
tions. For example, ordinary least squares regression (OLS) makes an 
explicit hypothesis regarding the directionality of the relationship be-
tween the predictor and response variables and robust regression is a 
technique that can deal with the effect of leverage from data points, 
or outliers, on the model fit (Gelman & Hill,  2007; Hampel,  2001; 
Kruschke, 2015).

Here, we reanalyse a central prediction of the GOLT – the re-
lationship between growth performance and gill area index. We 
ask four key questions that examine limitations and assumptions in 
the original analysis. Additionally, we incorporate gill surface area 
and body mass data across more species that have become avail-
able in the 40  years since this relationship was first established. 
Specifically, we ask (1) how sensitive is the relationship between gill 
area index and growth performance to outliers, (2) what is the ef-
fect of parameterizing the relationship between gill area index and 
growth performance based on the predictions made by the GOLT 
(i.e. flipping the axes and testing whether gill area index can explain 
variation in growth performance), (3) does the gill area index and 
growth performance relationship still hold when examined across 
more species and (4) how do the different ways of calculating gill 
area index affect the relationship between gill surface area and 
growth performance?

2  |  METHODS

Because of the different data and methods associated with each of 
the four questions, we outline the methods for each question sepa-
rately below.

2.1  |  How sensitive is the relationship between 
gill area index and growth performance to outliers?

A statistical outlier can be defined as an outlying or extreme obser-
vation, one that appears to deviate markedly from other members 
of the sample, fall unusually far from the expected value based on 
the model or greatly influences model results (Fahrmeir et al., 2013; 
Gelman & Hill,  2007). Although checking for outliers is com-
mon practice, standardized methods across fields to identify and 
deal with outliers are rare (Burnham & Anderson, 2002; Fahrmeir 
et al., 2013; Hampel, 2001). Historically, outliers have often been 
removed from data sets to facilitate modelling by OLS or similar 
methods (e.g. reduced major axis regression), but because there is 
often no way to non-arbitrarily remove outliers, it is more commonly 
recommended to instead refine the model to accommodate outliers 
(Hampel,  2001; Kruschke,  2015). One way of identifying outliers 
is to use model diagnostics such as Cook's distance for frequen-
tist models and Pareto k for Bayesian models (Fahrmeir et al., 2013; 
Gabry et al., 2019; Vehtari et al., 2017). If the value of a data point's 
Cook's distance or Pareto k is above the threshold (0.5 for Cook's 
distance, 0.7 for Pareto k), it is recommended to employ robust re-
gression, a class of regression models that relax the assumption of 
normality that is characteristic of the most common OLS regression 
models (Gelman & Hill, 2007; Kruschke, 2015; Vehtari et al., 2017). 
Robust regression downweights influential data points or employs 
a fat-tailed distribution, for example Student's t, to model the re-
sponse distribution (Anderson et al.,  2017; Gelman & Hill,  2007; 
Wang & Blei, 2018).

While many ways to estimate a robust regression exist, com-
mon frequentist methods are quantile regression and iteratively 
reweighted least squares regression (Fahrmeir et al.,  2013; Fox 
& Weisberg,  2012; Rousseeuw,  1984). As used in our analysis, 
quantile regression simply models the median of the response 
variable as a linear function of the predictor variables (instead of 
the mean, as in OLS; Fahrmeir et al., 2013; Fox & Weisberg, 2012; 
Rousseeuw, 1984). Iteratively reweighted least squares regression 
downweights outliers according to the distance from the best-
fit line and iteratively refits the model (Fox & Weisberg,  2012; 
Rousseeuw,  1984). In a Bayesian framework, robust regression 
simply involves allowing the response distribution to be less re-
strictive; in our case, this would entail using a Student's t distribu-
tion (Gelman et al., 2020; Lange et al., 1989; Wang & Blei, 2018). 
The Student's t distribution is a normal distribution but with the 
degrees of freedom parameter, nu, set to infinity; nu can either be 
estimated from the model directly or set to a specific value (Wang 
& Blei, 2018).



    |  357BIGMAN et al.

For this first question, we used model diagnostics to iden-
tify possible outliers in the original data set used by Pauly (1981; 
hereafter, ‘Pauly data set’). To do so, we used Cook's distance 
and Pareto k, both of which are measures of the influence of a 
given observation on the model. Cook's distance values were 
estimated using OLS and Pareto k values were estimated using 
Bayesian simple linear regression (Fahrmeir et al.,  2013; Vehtari 
et al., 2017). We then compared regression coefficients estimated 
by different methods of linear and robust linear regression to 
Pauly's (1981) original gill area index to growth performance rela-
tionship (which was estimated via a reduced major axis regression 
on 37 and 40 data points [species]). To do so, we fit several mod-
els using R (R Core Team, 2020): (1) we re-estimated the reduced 
major axis regression for the 37 and 40 data points as reported in 
Pauly (1981, 2010), (2) we fit a reduced major axis regression with 
all 42 species (lmodel2 function in the lmodel2 package; Legendre 
& Oksanen, 2018), and (3) we fit four types of robust regression 
models: (a) quantile regression (rq function in the quantreg package; 
Koenker, 2020), (b) iteratively reweighted least squares regression 
(rlm function in the MASS package; Venables & Ripley, 2002), and 
(c and d) Bayesian regression with a Student's t distribution (i.e. 
robust Bayesian regression; brm function in the brms package; 
Bürkner, 2017, 2018) with two priors that differed in the strength 
of the prior on the degrees of freedom parameter (nu), one model 
with a strong prior and the other with a weakly informative prior 
(Vehtari et al., 2017).

2.2  |  What is the effect of flipping the axes and 
testing whether gill area index explains variation in 
growth performance?

Using the Pauly data set, we ask how the relationship between gill 
area index and growth performance would differ if parameterized 
according to the prediction of the GOLT. As this is a different model, 
we first estimated both Cook's distance and Pareto k (see Question 
1) to identify any outliers using OLS and Bayesian linear regres-
sion, respectively, as outliers, as well as other diagnostics should be 
checked for any and all model runs. If any outliers were identified 
(Cook's distance >0.5 or a Pareto k value >0.7), we used robust re-
gression in a Bayesian framework to estimate the slope and intercept 
as Bayesian regression offers more information than frequentist re-
gression and thus we preferentially choose to use it when possible. 
As in Question 1, we used the brm function in the brms package to 
estimate two Bayesian linear models with a Student's t response dis-
tribution, one with a strong prior on nu and one with a weak prior 
on nu (Bürkner, 2017, 2018). Pareto smoothed importance sampling 
leave-one-out cross validation (PSIS-LOO) was used to compare the 
two Bayesian models with different priors on nu to identify which 
prior provided the best fit to the data (Vehtari et al., 2017). Finally, 
we computed an r2 value using the bayes_R2 function in the brms 
package for the purpose of comparing it with Pauly's reported r2 val-
ues (Bürkner, 2017, 2018).

2.3  |  Does the original gill area index and growth 
performance relationship still hold when examined 
across more species?

2.3.1  |  Additional data collection and sources

We compiled a data set of additional fishes (teleost, elasmobranch 
and coelacanth) for which gill surface area, body mass associated 
with gill surface area (i.e. the body mass of the individual who's gill 
surface area was measured, hereafter ‘measurement body mass’), 
and von Bertalanffy growth parameters were available. Data were 
first collated for species with estimates of gill surface area and avail-
able growth parameters in Fishbase (Froese & Pauly, 2020). This was 
further supplemented with published gill surface area data from 
other sources if a given species also had available growth parameters 
from Bigman et al.  (2021), Jager and Dekkers  (1975), Gray  (1954), 
Hughes and Morgan (1973) and Palzenberger and Pohla (1992).

2.3.2  |  Gill surface area data

Gill surface area estimates, cm2 or mm2, and measurement body mass 
were extracted from the original study in which they were reported, 
if possible, otherwise were extracted from Fishbase, which was the 
case for three species. Prior to analyses, all gill surface area data were 
converted to cm2. Both raw, that is estimates for multiple individuals 
of a species, and mean gill surface area data were included in our 
expanded data set. If more than one study reported raw data for a 
number of individuals for a given species, we included both data sets 
(this was only the case for three species: Common Thresher Shark 
(Alopias vulpinus, Alopiidae), Sandbar Shark (Carcharhinus plumbeus, 
Carcharhinidae) and Shortfin Mako (Isurus oxyrinchus, Lamnidae)). If 
a given species had both published raw and mean data, we preferen-
tially chose the study that included raw data. All raw data were aver-
aged per species to generate a species-specific mean of gill surface 
area and body mass for calculating gill area index. If more than one 
study reported mean data (this was the case for four species), we 
chose the study with the largest sample size. Any gill surface area 
estimate that was not directly measured (e.g. predicted from theo-
retical geometric relationships) was not included in this study (for 
further discussion, see Satora & Wegner, 2012). Additionally, the 42 
species in the Pauly data set were included in our expanded data set, 
hereafter, ‘full data set’, with the exception of four species for which 
the gill surface area data could not be verified: European Anchovy 
[Engraulis encrasicolus, Engraulidae], Lined Seahorse [Hippocampus 
hudsonicus  =  Hippocampus erectus, Syngnathidae] and Black 
Scorpionfish [Scorpaena porcus, Scorpaenidae], or the gill surface 
area was predicted from a regression equation and not empirically 
measured (Spiny Dogfish [Squalus acanthias, Squalidae]). For the re-
maining 38 species, 25 of these did not have more recent or higher 
quality gill surface area data available (e.g. larger sample size, raw 
data) and thus the original data used by Pauly (1981) from Hughes 
and Morgan (1973) were included in our data set. For the remaining 
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13 species, either raw data were acquired or as the Pauly data set 
included averaged mean gill surface area data (i.e. means of means), 
only the mean from the study with the largest sample size was in-
cluded in the full dataset.

2.3.3  |  Life history data

Using the ‘rfishbase’ package for Fishbase, we extracted all observa-
tions of von Bertalanffy growth function parameters for each spe-
cies in our dataset including k (year−1), the growth coefficient, and 
W

∞
 (g) and L

∞
 (cm), the asymptotic mass or length individuals in a 

population would reach if they were to grow indefinitely (Boettiger 
et al., 2012; Froese & Pauly, 2020). As most von Bertalanffy growth 
functions are estimated in terms of length and not weight, we used 
length–weight regressions (also from Fishbase) to convert L

∞
 to W

∞
 

(Boettiger et al., 2012; Froese & Pauly, 2020). L
∞

 was converted to 
W

∞
 based on species-, length type- (total length [TL], fork length 

[FL]) and sex-specific length–weight regressions. If growth data 
were not available in Fishbase for a species, the primary literature 
was searched for published age and growth data. For eight species, 
growth parameters were not available in Fishbase but were found in 
the literature. For seven species, sex-specific length–weight coeffi-
cients were not available for sex-specific growth parameters, and so 
available length–weight coefficients were averaged and then used 
to estimate W

∞
. For 14 species, length–weight coefficients for the 

same length type as was used to estimate growth parameters were 
not available (i.e. the growth coefficient was estimated using fork 
length but no length–weight regression for fork length to weight or 
conversion from another length type was available), and thus match-
ing type-specific length–weight regressions were collated from the 
literature.

2.3.4  |  Estimating gill area index and growth 
performance

Following Pauly (1981, 2010) we estimated gill area index for each 
species in the full dataset (n = 132). For simplicity in this question, 
we opted to use a constant value of d = 0.8 for all species as used 
in Pauly (2010). We then re-estimated gill area index for the 42 spe-
cies in the Pauly dataset using d = 0.8 as these values of gill area 
index were not reported in Pauly (2010) and Pauly (1981) used the 
predicted d. Growth performance was calculated for each observa-
tion as log10(k * W

∞
) following Pauly (1981). For analyses, a mean of 

growth performance was taken for each species.

2.3.5  |  Statistical analysis

We used OLS regression estimated in a Bayesian framework using 
the brm function in the brms package to estimate regression co-
efficients for the relationship between gill area index and growth 

performance for the Pauly dataset (n  =  42) and the full dataset 
(Bürkner, 2017, 2018; R Core Team, 2020). For these models, growth 
performance was the response variable and gill area index was the 
predictor variable. We examined the existence of outliers in all mod-
els using Cook's distance and Pareto k.

2.4  |  How do the different ways of calculating 
gill area index affect the relationship between gill 
surface area and growth performance?

For this question, we assessed how the calculation of gill area 
index affected the relationship between growth performance and 
gill area index. We used the two ways gill area index has been 
calculated by Pauly (1981) and Pauly (2010) but restricted the data 
set to those species that have raw gill surface area and measure-
ment body mass data, which allowed us to calculate gill area index 
as originally intended, where d is the empirically estimated slope 
of a species-specific ontogenetic allometry. Specifically, we com-
pared the relationship between growth performance and gill area 
index with gill area index calculated in three different ways: (1) 
gill area index calculated following Pauly (1981) – that is, with the 
predicted d for each species, (2) gill area index calculated follow-
ing Pauly (2010) – that is, with a constant d value across all spe-
cies (d = 0.8) and (3) gill area index calculated with an empirically 
estimated d value – that is, the d value is the scaling (slope) of gill 
surface and body mass.

2.4.1  |  Data filtering

For this question, we filtered our full data set to include those 
species that had raw gill surface area data for at least eight indi-
viduals, hereafter, ‘raw data set’. This threshold of eight individuals 
was based on simulations (see Bigman et al., in review) and other 
studies that have assessed the effect of sample size on regres-
sion parameters (Jenkins & Quintana-Ascencio, 2020). In order to 
facilitate comparison across models with and without a phylogeny, 
we further restricted our data set to include only those species 
that have a resolved phylogenetic position on the Fish Tree of Life 
or are included in a recently published Chondrichthyan phylogeny 
(Chang et al.,  2019; Rabosky et al.,  2018; Stein et al.,  2018). Of 
the 132 species that have published gill surface area and life his-
tory traits in our full data set, 32 species met our criteria (raw gill 
surface area data with at least eight individuals, known growth 
parameters and resolved position on the phylogeny) for inclusion 
in our raw data set.

2.4.2  |  Statistical analysis

To assess whether growth performance varied with gill area 
index as calculated with empirically estimated slope values, we 
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employed a novel phylogenetic Bayesian multilevel modelling 
framework that included three levels. The first level of the model 
estimated the ontogenetic allometry of gill surface area and body 
mass for each species, resulting in a species-specific posterior 
distribution of the intercept and ontogenetic slope. The second 
level then used those species-specific slope values, as well as 
the species-mean gill surface area and body mass, to calculate 
the gill area index for that species. The third level of the model 
then examined whether this species-specific gill area index calcu-
lated with an empirically estimated d value explained variation in 
growth performance. Thus, this model estimated species-specific 
slopes in the first level, calculated gill area index for each species 
using the species-specific mean gill surface area, mean body mass 
associated with the mean gill surface area, and slope estimated in 
the first level of the model in the second level and then examined 
whether gill area index explained variation in growth performance 
in the third level. To ensure that intercepts were estimated accu-
rately across the broad size range of species included in the data 
set, body mass data were centred on the mean value of body mass 
for all 32 species in the data set (300 g). The gill area index was 
log10-transformed and standardized using a z-score prior to the 
second level of the model. The strength of using such a multilevel 
modelling approach is that the uncertainty in the species-specific 
intercepts and ontogenetic slopes estimated in the first level of 
the model, and thus gill area index, is propagated across levels of 
the model as each iteration of all levels of the model happens in 
succession (Bigman et al.,  2021). All models were fit in R using 
rstan (Stan Development Team, 2019; R Core Team, 2020; see the 
Appendix S1 for more detail on our modelling approach).

We then calculated gill area index for the same 32 species based 
on Pauly (1981) and Pauly (2010) and fit two additional models, for 
a total of three, to assess whether these gill area indices explained 
variation in growth performance. Finally, we compared the results 
from all three models to assess whether the relationship between 
growth performance and gill area index was sensitive to how gill area 
index is calculated. Note that these last two models differed from 
those in Question 3 by the number of data points: here, we only 
used species in the raw data set for purposes of comparison with 
the model that calculates gill area index using empirically estimated 
d values (which we note can only be done for species with raw gill 
surface area and body mass data).

There were four considerations that necessitated rerunning 
models in Question 4 on four subsets of data. First, we ran all 
models with and without a random effect of phylogeny to ensure 
our results were not biased due to species' sharing various parts 
of evolutionary trajectories (Felsenstein, 1985; Freckleton, 2009; 
Harmon,  2019). To do so, we constructed a new supertree with 
species from our data set using two published phylogenies – one 
for teleosts (Chang et al., 2019; Rabosky et al., 2018) and one for 
chondrichthyans (Stein et al., 2018). Second, we reran all models 
without those species traditionally used in aquaculture because 
the growth of ‘aquacultured’ species is known to differ from that of 
wild fishes due to food ad libitum, reduced predation and possibly 

increased aeration of aquaculture ponds (Pauly,  2010). Third, we 
reran all models without air-breathing fishes because fishes that 
breathe air either by possessing an air-breathing organ or passive 
oxygen diffusion through the skin often have a lower gill surface 
area for a given body size compared to their non-air-breathing 
counterparts (Graham,  1997; Wegner,  2011). Finally, we also en-
sured that our regression coefficients were not sensitive to a 
threshold of eight species for estimating an allometry – for this, we 
limited our raw data set to those species with gill surface area mea-
surements that ranged over an order of magnitude of body mass 
(n = 34 species). Adding a random effect of phylogeny, removing 
aquacultured and air-breathing species or using a data set where al-
lometries were estimated based on body size range did not change 
our results (Table S1).

3  |  RESULTS

3.1  |  How sensitive is the relationship between gill 
area index and growth performance to outliers?

We did not identify any outliers in the Pauly data set based on both 
Cook's distance and the Pareto k values (Figure 1). This suggests that 
the five species suspected to be outliers that were subsequently re-
moved from analysis did not affect the relationships between gill 
area index and growth performance reported in Pauly  (1981) and 
Pauly (2010) and, thus, the results are very similar with and without 

F I G U R E  1  No outliers were identified in the original gill area 
index and growth performance data set from Pauly (1981). The 
Cook's distance (a) and Pareto k values (b) for each of the 42 
species in the original data set. The horizontal red line in each plot 
indicates the threshold for outliers based on Cook's distance (top) 
and Pareto k (bottom).
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the inclusion of these species (Figure 2, Table S2 shows which spe-
cies were originally thought to be outliers).

When comparing model fits across regression methods (re-
duced major axis, quantile, iteratively reweighted least squares and 
Bayesian robust), the mean slope for the relationship of gill area 
index and growth performance for all regression methods was posi-
tive but depended on the type of regression (Figure 2, Table 1). The 
three reduced major axis regression models yielded the greatest 
mean slope values (~0.4, 95% confidence intervals [CI] did not over-
lap with zero).

The slope value from Pauly's original reported fit estimated via 
reduced major axis regression was also slightly greater than any of 
the other reduced major axis regression models (Figure 2, Table 1). 
Notably, the mean slopes of all models estimated with reduced major 
axis regression were significantly greater than the mean slopes esti-
mated by robust regression, which had 95% CIs or Bayesian Credible 
Intervals [BCIs] that were only slightly non-zero (or for robust 
Bayesian regression with a weak prior on nu, just overlapping with 
zero). The four different robust regression models almost had iden-
tical mean slopes and 95% CIs or BCIs. Further, the choice of prior 

F I G U R E  2  The relationship between growth performance and gill area index depends on the type of regression used. (a) A coefficient 
plot of the mean slope (coloured circle) and 95% intervals (confidence intervals for all non-Bayesian models, credible intervals for all 
Bayesian models) for all models examined. The vertical grey line indicates zero. (b) The relationship of growth performance and gill area 
index depends on various regression methods (coloured according to those in panel (a)).

TA B L E  1  Comparison of coefficients estimated by various regression methods for the original model of gill area index and growth 
performance following Pauly (1981, 2010). In these models, gill area index is the response variable and growth performance is the predictor 
variable. The number of species used in each model is indicated by ‘n’ and thus indicates whether or not outliers were excluded when fitting 
the model.

Model name Regression method Intercept (95% CI) Slope (95% CI) n

Pauly (1981) reported fit with five potential 
outliers excluded

Reduced major axis (i.e. ‘functional’) 
regression

−0.53 (not given) 0.57 (not given) 37

Pauly (1981) reported fit with two potential 
outliers excluded

Reduced major axis regression not given not given 40

Reduced major axis: 37 species Reduced major axis regression −0.06 (−0.40–0.19) 0.40 (0.31–0.53) 37

Reduced major axis: 40 species Reduced major axis regression 0.02 (−0.34–0.28) 0.40 (0.30–0.54) 40

Reduced major axis: 42 species Reduced major axis regression −0.26 (−0.71–0.08) 0.47 (0.35–0.65) 42

Quantile regression Robust regression 0.63 (0.38–0.86) 0.17 (0.05–0.24) 42

Iteratively reweighted least squares Robust regression 0.64 (0.31–0.98) 0.14 (0.02–0.26) 42

Robust Bayesian regression weak prior on nu Bayesian robust regression 0.68 (0.29–1.08) 0.13 (−0.02–0.27) 42

Robust Bayesian regression strong prior on nu Bayesian robust regression 0.63 (0.27–1.00) 0.15 (0.02–0.28) 42
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on nu for the Bayesian models did not significantly affect the mean 
slope estimate (Figure 2, Table 1).

3.2  |  What is the effect of flipping the axes and 
testing whether gill area index explains variation in 
growth performance?

When the relationship between gill area index and growth perfor-
mance was parameterized according to predictions made by the 
GOLT, one outlier, West Indian Coelacanth (Latimeria chalumnae, 
Latimeriidae) was identified using Cook's distance; however, the 
Pareto k value of this species was below the outlier threshold of 0.7. 
To be conservative, we compared the results from a Bayesian robust 
regression to those estimated by a Bayesian simple linear regression 
(or, ‘Bayesian regression with a Gaussian distribution’) to ask whether 
gill area index can explain variation in growth performance for the 
42 fish species in the Pauly data set. The model fit was equivalent 
regardless of the model used based on the leave-one-out informa-
tion criterion (looic, similar interpretation as AIC; robust regression 
weak prior = 119.6, robust regression strong prior = 120.9, Bayesian 
simple linear regression = 119.2; Figure 3, Table 2).

Flipping the axes such that gill area index is the predictor variable 
and growth performance is the response variable and, thus, testing 
whether gill area index explains variation in growth performance, 
results in a weakly positive relationship for all three models with the 
95% BCIs overlapping with zero (mean effect sizes ranged from 0.43 

to 0.58 depending on the model; Figure 3, Table 2). For the robust 
regression with a weak prior, 91.3% of the posterior distribution of 
the gill area index slope was greater than zero, for the robust regres-
sion with a strong prior, 92.9% of the posterior distribution of the gill 
area index slope was greater than zero, and for the Bayesian simple 
linear regression (that with a Gaussian distribution), 89.9% of the 
posterior distribution of the gill area index slope was >0 (Figure 3, 
Table 2). The r2 values were low for all three models (.06–.09).

3.3  |  Does the original gill area index and growth 
performance relationship still hold when examined 
across more species?

The full data set included 708 observations of gill surface area and 
associated body masses from a total of 132 fish species for which 
von Bertalanffy growth parameters were available (Table S3).

The relationship between gill area index calculated with d = 0.8 
for all species and growth performance parametrized according to the 
predictions of the GOLT was positive irrespective of the number of 
species included in the dataset (Figure 4). Indeed, we found a positive 
relationship between gill area index and growth performance across 
132 fishes, a relationship that was strikingly similar to the original re-
lationship across the 42 species in the Pauly data set. For the Pauly 
data set, the mean slope = 0.83 (95% BCI 0.19–1.47), with 99.4% of the 
posterior distribution greater than zero. For the full data set (n = 132 
species), the mean slope = 0.87 (95% BCI 0.52–1.23), with 100% of the 

F I G U R E  3  The relationship between growth performance and gill area index for the 42 fish species in the Pauly (1981) data set as 
parameterized according to the GOLT's prediction that gill surface area constrains growth in fishes. (a) Coefficient plot of the mean slope 
(coloured circle) and 95% Bayesian Credible Intervals (BCIs; bar) for both robust Bayesian regression models (strong vs. weak prior on nu) 
and the simple linear Bayesian regression (or, ‘Bayesian regression with a Gaussian distribution’). The vertical grey line indicates zero. (b) The 
relationship between gill area index and growth performance for those same three models (coloured according to those in panel (a)). The 
model fit is equivalent regardless of the model; the 95% BCIs for all three models overlap with zero.
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posterior distribution greater than zero. The slopes were statistically 
indistinguishable from each other, as the slopes of both models fell 
within the 95% BCI of the other (Figure 4). We note that the r2 value 
is still low (.16 for the full data set, .15 for the Pauly data set) and that 

TA B L E  2  Comparison of Bayesian coefficients and their 95% Bayesian Credible Intervals (BCI) estimated for the relationship between 
gill area index and growth performance, as parameterized according to the predictions made by the GOLT (growth performance ~ gill area 
index). Model selection was conducted using Pareto-smoothing importance sampling leave-one-out cross validation (PSIS-LOO) using the 
loo package in R v.5.3.1 and v.4.0.1. looic = LOO information criterion value (similar to Akaike Information Criterion [AIC]).

Regression method Intercept (95% BCI) Slope (95% BCI)
Proportion of posterior 
distribution >0 Looic

Bayesian simple linear regression 2.22 (1.50–2.95) 0.43 (−0.23–1.10) 0.899 119.2

Bayesian robust regression with weak prior on nu 2.16 (1.38–2.91) 0.48 (−0.21–1.20) 0.913 119.6

Bayesian robust regression with strong prior on nu 2.03 (1.20–2.86) 0.58 (−0.19–1.34) 0.929 120.9

F I G U R E  4  The relationship between growth performance and 
gill area index was strikingly similar between the (a) 42 fish species 
in the Pauly (1981) data set and the (b) 132 fish species for which 
gill surface area data have become available in the 40 years since 
this relationship was first examined. The model was parameterized 
according to the GOLT's prediction that gill surface area constrains 
growth in fishes and with gill area index estimated using d = 0.8. 
The model fits were estimated using Bayesian linear regression 
using the brm function in the brms package in R.v.4.0.2.

F I G U R E  5  The relationship between growth performance 
and gill area index differed depending on how gill area index was 
calculated: (a) gill area index calculated from empirically estimated 
d values, (b) gill area index calculated using d = 0.8 and (c) gill area 
index calculated from a predicted d value from the relationship of 
d and maximum size from Pauly (1981). All models were estimated 
using the ‘raw data set’ of 32 species with raw gill surface area 
and body mass data. The relationship in (a) was estimated using 
a Bayesian multilevel modelling framework (see text), and the 
relationships in (b) and (c) were estimated using Bayesian linear 
regression (see text). The fit lines represent the fitted growth 
performance for each value of gill area index, and the grey shaded 
region represents the 95% Bayesian Confidence Interval. The 95% 
BCIs for all models overlapped with zero.
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there remains a great deal of variability in the relationship, as indicated 
by the range of growth performance values for a given gill area index.

3.4  |  How do the different ways of calculating 
gill area index affect the relationship between gill 
surface area and growth performance?

Our raw data set included 457 observations of gill surface area and 
associated body masses from a total of 32 fish species (teleosts and 
elasmobranchs) that have a resolved phylogenetic position and for 
which von Bertalanffy growth parameters were available (Table S4).

The mean effect sizes of the slope for the relationship between 
growth performance and gill area index differed depending on how 
gill area index was parameterized. The mean effect size of the slope 
was greatest when gill area index was calculated with a constant 
value of d  =  0.8, lower when gill area index was calculated with 
an empirically estimated d, and almost equal to zero when gill area 
index was calculated with the d value predicated from a relationship 
between maximum size and the scaling of gill surface area or meta-
bolic rate for other species (Figure 5, Table 3).

When calculating gill area index with an empirically estimated 
d from the scaling of gill surface area data and body mass for the 
32 species for which it was available, or a d value predicted from 
the relationship between maximum size and the slope of gill surface 
area or metabolic rate as used in Pauly (1981), the posterior distri-
bution of the mean effect size overlapped with zero (empirical d: 
mean slope = 0.23, 95% BCI = −0.35 to 0.60, 69.4% of the posterior 
distribution greater than zero; predicted d: mean slope = 0.06, 95% 
BCI = −0.43 to 0.53, 59.6% of the posterior distribution greater than 
zero; Figure 5, Table 3). However, when gill area index was calcu-
lated with d = 0.8 (i.e. assuming the scaling of gill surface area does 
not differ across species), the relationship was positive, although the 
lower end of the 95% BCI = 0 (mean slope = 0.44, 95% BCI = 0–
0.88, 97.4% of the posterior distribution greater than zero, Figure 5, 
Table 3).

4  |  DISCUSSION

Overall, we found that although a central prediction of the GOLT 
– the relationship between growth performance and gill area index 
– is positive, suggesting that gill area index does explain variation 
in growth performance, it is dependent on the method used to 
calculate gill area index and the type of regression used to fit the 
data. Indeed, the relationship (the mean effect size, the proportion 
of the posterior distribution that was >0 and whether the poste-
rior distribution [and thus the 95% BCI] crossed 0) between growth 
performance and gill area index differed depending on how gill area 
index was calculated (i.e. with an empirically estimated d value, a 
constant d value, or a predicted d value from a relationship between 
maximum size and the scaling of gill surface area and metabolic rate 
for other species). In addition, we found that this relationship was 

less sensitive to the inclusion of outliers than originally suspected 
and that it was still positive when parameterized according to the 
prediction made by the GOLT (that gill area index explains variation 
in growth performance). Remarkably, we found that the relation-
ship between growth performance and gill area index was similar 
whether fitted across Pauly's original data set (42 species) or an en-
hanced data set of 132 species. We focus our discussion on the gill 
area index metric, how different regression techniques affected the 
results, and finally, suggest future areas of research.

We found that the relationship between growth performance 
and gill area index was sensitive to how gill area index was calculated. 
The three methods of calculating gill area index resulted in relation-
ships with growth performance that differed in terms of mean effect 
sizes, the proportion of the posterior distribution that was >0 and, 
thus, whether the posterior distribution crossed zero, which is tra-
ditionally used to identify a nonsignificant relationship. Further, all 
three relationships between gill area index and growth performance 
estimated using our raw data set of 32 species (with high-quality gill 
surface area and body mass data) differed from Pauly's originally es-
timated relationship and our relationship estimated across more spe-
cies (but using the same methods as Pauly (1981) to estimate gill area 
index). Pauly's original model (Pauly, 1981) and our model across 132 
fishes both had steeper slopes between growth performance and 
gill area index than we found using our raw data set. This variability 
in gill area index, and subsequently, the resulting relationship be-
tween gill area index and growth performance is largely due to the 
nature of the gill area index metric. While intended to solve the issue 
of mean data (explained next), the scaling parameter in the gill area 
index calculation influences a given gill area index value for a spe-
cies and, in turn, the relationship between gill area index and growth 
performance. We found that when gill area index was calculated as 
intended (with d  =  empirically estimated species-specific slope of 
gill surface area and body mass), it did not explain much variation 
in growth performance. However, the larger issue with the gill area 
index stems from its calculation with mean data.

As mentioned in the introduction, the gill area index is calculated 
using mean gill surface area and mean body mass data. For most 
fishes, gill surface area and the associated body mass data are from a 
non-random sample of individuals – whatever size range and number 
of individuals that can be logistically brought back from the field to 
the laboratory for dissection and measurement (Bigman et al., 2018; 
Carlson et al.,  2004; VanderWright et al.,  2020). This is an issue 
for many traits, especially when measuring them on ectothermic 
species, which largely grow indeterminately throughout their life 
(Berrigan & Charnov, 1994; Bigman et al., 2018; Kozlowski, 1996). 
Indeed, many traits, such as gill surface area or metabolic rate, scale 
non-linearly with body size and are described by a power law re-
lationship (before the common log-transformation, see Bigman 
et al., 2018; White & Kearney, 2014). Thus, taking an average of such 
a trait results in underestimating the true average of this trait for 
a given species, even if data are available across ontogeny, which 
is rarely the case. This results in mean values of such traits being 
problematic and not representative of that trait for that species. 
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This includes the oft-calculated mass-specific or relative measure of 
a trait (e.g. relative gill surface area is the gill surface area at a given 
body mass or that predicted from a regression equation at a specific 
body mass and mass-specific gill surface area is the gill surface area 
per g of body mass). Indeed, an index based on mean data suffers 
from Jensen's inequality, which is also known as ‘the fallacy of the 
average’, or the problem of averaging over a non-linear relationship 
(Denny,  2017). We note that this problem with gill area index ap-
plies to the gill area indices we used here (i.e. regardless of how gill 
area index is calculated, it still does not capture how gill surface area 
changes with size).

Our results also suggest that the type of regression used to fit 
a relationship between two variables, and how a relationship is pa-
rameterized, affects the outcome more so than whether outliers 
were included or not. We found that different techniques to employ 
robust regression (here, quantile regression, iteratively reweighted 
least squares regression, and robust regression with both strong 
and weak priors) generally yielded the same results, although the 
mean effect sizes (and whether the 95% BCI crossed zero) did differ 
among regression techniques. Further, the results from the robust 
regression models differed from the original method used, reduced 
major axis regression. While modelling can be thought of as more art 
than science (sensu Box 1976, who famously stated, ‘All models are 
wrong, but some are useful’), care should be taken to select a statis-
tical technique—and parametrization of the model—that is appropri-
ate for a given data set and questions (Gelman & Hill, 2007). In our 
case, recommendations for deciding between reduced major axis 
regression or robust regression in the literature are based on the bi-
ological question(s) at hand (Kilmer & Rodríguez, 2017; Smith, 2009). 
One key assumption of using reduced major axis regression is that 
the relationship between the predictor(s) and response variable is 
symmetric—it does not matter which variable is the predictor and 
which is the response, as the resulting coefficients and relationship 
will be identical (McArdle, 2003; Smith, 2009). As the GOLT makes 
an explicit prediction about directionality—that gill surface area is 
constraining maximum size—we suggest that the relationship be-
tween gill area index and growth performance should not be tested 
in a symmetrical manner, and thus favour using robust regression and 
the resulting conclusions that can be drawn from this framework. We 
note that to draw conclusions in an asymmetrical manner between 

gill area index and growth performance following the GOLT, the re-
sponse variable and predictor variable should be flipped. When we 
did so, we found that the relationship between growth performance 
and gill area index was stronger. However, gill area index was still 
used as a metric of gill surface area in these relationships.

To examine whether maximum size, growth, and even other 
life history traits are indeed related to oxygen limitation at the 
gills, more realistic measures of gill surface area are needed to 
help uncover whether and how oxygen is related to growth per-
formance and other life history traits. Indeed, we argue that the 
gill area index, a metric based on mean data (an average across a 
non-random sample of individuals) is not an ideal metric for which 
to test this relationship. Our study showed that this metric was vari-
able depending on how it was calculated, yielding different rela-
tionships with growth performance. To this end, future work in this 
area should employ more realistic measures of gill surface area, for 
example, the ontogenetic regression coefficients from an allometry 
of gill surface area and body mass, with respect to its relationship 
with growth performance and then expand from there to other life 
history traits (as the GOLT argues that oxygen limitation at the gills 
limits the aerobic metabolic rate and thus energy for traits related 
to survival, growth and reproduction). In a follow-up paper (Bigman 
et al., in review), we address the former part of this idea by bringing 
gill surface area into a scaling context and examining whether the 
gill surface area at a given size (the intercept of a gill surface area 
allometry—or the predicted gill surface area at a given size) and the 
rate at which gill surface area increases with body mass ontogenet-
ically (the slope of a gill surface area allometry) are related to so-
matic growth, maximum size and growth performance. Specifically, 
we base our estimations of these intercepts and slopes on similar 
principles here—raw gill surface area for multiple individuals of a 
species. Additionally, we employ the novel phylogenetic Bayesian 
multilevel model used here to assess how individual variation in the 
gill surface area and body mass relationship confers patterns of gill 
surface area and life history traits across species. Indeed, under-
standing the role that oxygen plays in the physiology and ecology 
of fishes, including whether oxygen limitation is occurring at the 
gills, will be paramount to predicting how species will respond to 
increasing temperatures and reduced oxygen availability associated 
with climate change.

TA B L E  3  Comparison of coefficients and their 95% Bayesian Credible Intervals (BCI) for the relationship between growth performance 
and the gill area index as calculated using (1) empirically estimated d values, (2) d = 0.8 and (3) d predicted from the relationship of d and 
maximum size in Pauly (1981; see text). The model in which gill area index was calculated using empirically estimated ontogenetic slope 
values was estimated using a Bayesian multilevel modelling framework in rstan in R v.4.0.2 and the models in which gill area index was 
calculated using either d = 0.8 or d predicted from Pauly (1981) were estimated using a Bayesian linear regression using the brms package in 
R.v.4.0.2. All slopes were standardized in the model prior to calculating gill area index, which was log10-transformed prior to the second level 
of the model (see text and SI).

Estimation of gill area index in the model for growth 
performance ~ gill area index Intercept (95% CI) Slope (95% CI)

Proportion of posterior 
distribution >0

Empirically estimated 3.80 (3.27–4.33) 0.23 (−0.38 to 0.84) 0.776

d = 0.8 3.07 (2.63 to 3.50) 0.44 (0.00 to 0.88) 0.974

Predicted d 3.07 (2.60 to 3.53) 0.06 (−0.43 to 0.53) 0.596
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